
DSDP4 – A Software Package Implementing
the Dual-Scaling Algorithm for Semidefinite

Programming 1

Steven J. Benson
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL U.S.A.

Yinyu Ye
Department of Management Sciences

The University of Iowa
Iowa City, IA 52242, U.S.A.

June 4, 2002

1This technical report, ANL/MCS-TM-255, was supported by the Mathematical, Information,
and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

Abstract

DSDP is an implementation of the dual-scaling algorithm for semidefinite programming.
The software package has been implemented in the C programming language and can be
used as a subroutine library, a Matlab routine, or as an executable that read SDPA files.
New features in this version include a Lanczos procedure for determining the step size, more
precise primal solutions, and improved performance on the standard test suites.

Contents

1 Semidefinite Programming 1

2 Installation Instructions 2
2.1 LAPACK . 3
2.2 Architectures . 3

3 Using DSDP 4
3.1 Standard Output . 4
3.2 DSDP with MATLAB . 5
3.3 Standalone version with SDPA files . 7
3.4 Applying DSDP to Graph Problems . 8
3.5 DSDP Application Programming Interface 8

3.5.1 Basics . 9
3.5.2 Set Data . 9
3.5.3 Improving Performance . 12
3.5.4 Set Options . 13
3.5.5 Viewing Solution . 14
3.5.6 Monitors . 16

4 Parallel DSDP 17
4.1 Installation . 17
4.2 Usage . 17

5 Dual-Scaling Algorithm 19
5.1 Step Direction . 19
5.2 Step Length . 20
5.3 Central Path . 21

6 Acknowledgements 22

i

Chapter 1

Semidefinite Programming

The DSDP package uses a dual-scaling algorithm to solve semidefinite optimization problems
of the form

Minimize C •X
(SDP)

Subject to Ai •X = bi, i = 1, . . . ,m,

X ∈ K.

(1.1)

and
Maximize bTy

(DSP)

Subject to
m∑
i=1

yiAi + S = C, S ∈ K,
(1.2)

In (SDP), the variable X must be a symmetric positive semidefinite matrix. This matrix may
have a block form such that K = K1⊕K2⊕· · ·⊕Kp and Kl is the cone of nl×nl symmetric
positive semidefinite matrices. The notation X(�) � 0 means that X is positive (semi)
definite, and the operation C •X = tr CTX =

∑
jk CjkXjk. The data matrices C,Ai ∈ <n×n

are symmetric. and have the same block structure as X. The dual variables in (DSP) are
y ∈ <m and the symmetric positive semidefinite matrix S. The scalars bi and yi are the ith
elements of the vectors b and y, respectively. Matrices X that satisfy the constraints are
called feasible, while the others are called infeasible. We assume the matrices Ai are linearly
independent, meaning that

∑m
i=1 yiAi = 0 implies y1 = . . . = ym = 0.

Under relatively mild conditions the primal and dual optimal solution pair (X∗) and
(y∗, S∗) exist, and C •X∗ = bTy∗.

1

Chapter 2

Installation Instructions

The compressed tar file DSDP4.5.tar.gz contains an implementation of the dual-scaling al-
gorithm for semidefinite programming optimization problems.

1. Create the DSDP4.5 directory structure with

gunzip -d DSDP4.5.tar.gz

tar -xvf DSDP4.5.tar

This command produces the directory DSDP4.5 and several subdirectories.

2. Change directories to DSDP4.5. Several executables have been provided. If one of
these runs on your architecture, proceed to step 3. Otherwise compile the executables
using

cd DSDP4.5

make install

This command creates libraries in each of the subdirectories and the executables for
DSDP.

3. DSDP4 can be called from MATLAB version 6.0. Run the sample problems by starting
MATLAB in the DSDP4.5 directory and typing

> check;

Compare the output with the output in demo.linux. For help using the package, type
help dsdp4.

Run the executables by switching to directory DSDP4.5/exec and typing

2

dsdp4 truss1.dat-s

Compare the output with that in demo.linux. If the output from any of the tests
differs significantly from the files, please report it to the developers.

2.1 LAPACK

The most common cause of trouble while compiling or running DSDP concerns linking
the program to LAPACK. DSDP links with the LAPACK routine dsyev to compute the
eigenvalues and eigenvectors of symmetric matrices. On most architectures, this routine is
called from C programs using dsyev . If this calling sequence is different on your machine,
modify the file DSDP4.5/src/vecmat/eigs.c . This file contains the line

#define dsdpdsyev dsyev_

which can be modified to call the appropriate routine.

If you have an optimized version of LAPACK available, you may link to it by modifying
the LAPACK macro in the file DSDP4.5/src/Makefile. Users with MATLAB 5 and lower
should add the LAPACK variable from the dsdp target.

You may also have to change the MEX macro in the directory DSDP4.5/src/Makefile.
This macro specifies the location of the MATLAB program and the mex functionality in
particular.

2.2 Architectures

DSDP has been compiled using several different compilers and on several different architec-
tures. In particular, it has been tested on linux, solaris, HP, and the Microsoft compiler.
When compiling on a PC, the makefile may have to be modified. Futhermore, the application
driver sdpa.c will have to define the constant DSDP PC for timing purposes.

3

Chapter 3

Using DSDP

3.1 Standard Output

The progress of the DSDP solver can be monitored using standard output printed to the
screen. The following is an example output from a random problem.

Iter Primal Dual Infeas. Mu Step Pnrm

--

0 0.00000000e+00 -2.47128801e+01 0.0e+00 1.0e+01 0.00 1.00

1 -1.28537231e+01 -1.64471021e+01 0.0e+00 1.2e+00 0.08 26.94

2 -1.28537231e+01 -1.59965110e+01 0.0e+00 2.3e-01 1.00 1.35

3 -1.28537231e+01 -1.59071616e+01 0.0e+00 2.1e-01 1.00 1.07

4 -1.28537231e+01 -1.55639753e+01 0.0e+00 1.5e-01 1.00 1.22

5 -1.50630757e+01 -1.53435713e+01 0.0e+00 1.4e-01 0.08 12.59

6 -1.51189868e+01 -1.52669146e+01 0.0e+00 1.0e-01 0.28 3.72

7 -1.51505856e+01 -1.52461229e+01 0.0e+00 1.0e-02 1.00 0.84

8 -1.52220358e+01 -1.52350997e+01 0.0e+00 9.2e-03 0.12 8.91

The program will print a variety of statistics for each problem to the screen.

Iter the current iterate number

Primal the current estimate of the primal objective function

Dual the current dual objective function

Infeas the infeasibility in the current dual solution This number is the multiple
of the identity matrix that has been added to the dual matrix

Mu a central path parameter. This parameter decreases to zero as the
points get closer to the solution

4

Step the multiple of the dual step-direction used

Pnrm The proximity to a point on the central path: ‖S.5XS.5 − µ̂I‖

3.2 DSDP with MATLAB

Help using the DSDP MATLAB interface can be found by simply typing help dsdp4 in the
directory DSDP4.5. The command

> [STAT, y, X] = DSDP(A,C,b)

attempts to solve the semidefinite program by using a dual-scaling algorithm. The arguments
A, C, and b, are the same as the corresponding arguments in the SDPT3 [5] package for
semidefinite programming. For a problem with p blocks and m constraints, A is a p × m
cell array and C is a p × 1 cell array. One block may contain LP variables, and the cells
corresponding to this block should be a vector array. All other cells must contain a square,
symmetric, real valued matrix. The choice of sparse or dense matrix formats belongs
to the user and will affect the performance of the solver. The third argument b is
a dense column vector of length m.

The second and third output arguments return the dual and primal solutions, respectively.
The first output argument is a structure with several fields that describe the solution of the
problem:

obj an approximately optimal objective value

primal an approximately optimal objective value if convergence to the
solution was detected, infeasible if primal infeasibility is sus-
pected, and unbounded if dual infeasibility is suspected

dual an approximately optimal objective value if convergence to the
solution was detected, infeasible if dual infeasibility is sus-
pected, and unbounded if primal infeasibility is suspected

iterates number of iterations used by the algorithm

dual infeasibity the multiple of the identity matrix added to C − AT (y) in the
final solution to make S positive definite

gaphist a history of the duality gap

infhist a history of the dual infeasibility

termcode 0 solution found, 1: primal infeasible, 2: dual infeasible

There are more ways to call the solver. The command

5

> [STAT, y, X] = DSDP(A,C,b,OPTIONS,y0)

specifies some options for the solver. The OPTIONS structure may contain any of the following
parameters:

gaptol tolerance for duality gap as a fraction of the value of the objec-
tive functions [default 1e-3]

inftol tolerance for stopping because of suspicion of dual infeasibility.
[default 1e-8]

steptol tolerance for stopping because of small steps [default 1e-2]

maxit maximum number of iterations allowed [default 100]

matrixfreesize problems with more constraints than this number will be
solved using a matrix-free method. These problems rely on an
iterative solver and should not be solved to a high accuracy.
[default 3000]

printyes 1, if want to display result in each iteration, else = 0 [default 1]

dual bound a bound for the dual solution. The solver stops when a feasible
dual iterate with an objective greater than this value is found
[default 1e+8].

maxtrustradius maximum trust region radius used for step size. Smaller radii
generally improve robustness of the algorithm but can also re-
duce the rate of convergence. If algorithm does not converge, for
a problem, try this option. A radius of 3 is very robust. [default
1.0e8].

r0 multiple of the identity matrix added to the initial dual matrix.
S0 = C−∑Aiy

0
i + r0 ∗ I. If r0 < 0, a dynamic selection will be

used. IF the solver does not converge, increase this number by
an order of magnitude. To improve robustness and convergence,
TRY this option. [default -1]

For instance, the commands

> OPTIONS.gaptol = 0.001

> [STAT, y, X] = DSDP(A,C,b,OPTIONS)

asks for a solutions with approximately three significant digits. The command

> [STAT, y, X] = DSDP(A,C,b,OPTIONS,y0)

6

specifies an initial dual vector y0. The default vector consists of positive and negative ones.

If only two output are used,

> [STAT,y] = DSDP()

returns only the solver statistics structure and an approximate dual solution y .

DSDP has also provides several utility routines. These routines include read sdpa()

which reads a file containing a problem in SDPA format and inserts it into the appropriate
Matlab data structures. It also includes the utility dimacserror() with the errors in the
solution, according the standards of the DIMACS Challenge. Finally, it has a maxcut()

utility that creates a maximum cut problem from a graph.

3.3 Standalone version with SDPA files

DSDP can also be run without the MATLAB environment if the user has a problem written
in sparse SDPA format. These executables have been put in the directory DSDP4.5/exec/.
The file name should follow the executable. For example,

> dsdp4 truss4.dat-s

Other options can also be used with DSDP. These should follow the SDPA filename.

-save <filename> to save the solution into a file with a format similar
to SDPA.

-y0 <filename> to specify an initial dual vector.

-maxit <iter> to stop the problem after a specified number of itera-
tions.

-gaptol <rtol> to stop the problem when the relative duality gap is
less than this number.

-maxtrustradius <radius> to limit the step size using a trust region.
The default is 20. Smaller positive numbers improve the
robustness of the solver, but can increase the number of
iterations and the solution time.

7

3.4 Applying DSDP to Graph Problems

Within the directory DSDP4.5/exec/ is a program maxcut which reads a file containing
a graph, generates the SDP relaxation of a maximum cut problem, and solves the relaxtion.
For example,

> maxcut Max2

The files that contain a graph should follow the DIMACS graph format. The first line
should contain two integers. The first integer states the number of nodes in the graph, and
the second integer states the number of edges. Subsequent lines have two or three entries
separated by a space. The first two entries specify the two nodes that an edge connects. The
optional third entry specifies the weight of the node. If no weight is specified, a weight of 1
will be assigned.

The same options that apply to reading SDPA files also apply here.

A similar program reads a graph from a file, formulates a minimum bisection problem or
Lovasz theta problem, and solves it. For example,

> minbisection Max2

> theta Max2

reads the graph in the file Max2 and solves this graph problem.

3.5 DSDP Application Programming Interface

DSDP4.5 can from within a C/C++ application through a set of subroutines. Examples
of using the DSDP API can be found by looking at the files DSDP4.5/src/dsdp.c and
DSDP4.5/src/sdpa.c, which read data from the MATLAB environment and a SDPA file,
respectively, and solve the problem by using DSDP. Other files DSDP4.5/src/maxcut.c
and DSDP4.5/src/minbis.c read a graph and formulate the maximum cut and minimum
bisection problems. Each of these applications includes the header file DSDP4.5/src/
dsdp4.h and links to the library DSDP4.5/src/dsdplib.a. All DSDP subroutines begin
with the DSDP prefix and return an error code. A zero code indicates success, while a nonzero
indicates that an error has occurred.

8

3.5.1 Basics

To call DSDP as a subroutine, the DSDP data structure must first be created with the
command

int DSDPCreate(int, int*, int*, DSDP *);

The first argument is the number of constraints in the problem, the second argument is the
number of blocks in the problem, and the third argument is an array of integers specifying
the dimension of each block. The length of this array must be at least as long as the number
of blocks in the problem and the dimension of each block corresponds the number of rows or
columns of matrices in the block. The final argument should receive the address of a DSDP

structure. This routine will allocate some resources for the solver and set the pointer.

After setting the data, which will be explained in the next section, DSDP must process
the data with the routine

int DSDPSetup(DSDP);

This routine allocates some additional resources for the solver and computes the eigenvalues
and eigenvectors of the constraint matrices. This routine should be called before solving the
problem, and should be called only once for each DSDP solver created. The command

int DSDPSolve(DSDP);

attempts to solve the problem. This routine can be called more than once. For instance, the
user may try solving the problem using different initial points. Each solver created should
be destroyed with the command

int DSDPDestroy(DSDP);

This routine frees the work arrays and data structures allocated by the solver.

3.5.2 Set Data

A positive semidefinite programming programming problem may be defined by using the
following “Set” routines. The first argument in each of these routines is a pointer to the
DSDP solver. To set the dual objective function, the routine

int DSDPSetDualObj(DSDP, int, double*);

9

accepts an array of double precision variables that contain the dual objective function b. The
second argument must equal the dimension of this objective vector and match the number
of constraints specified the DSDPCreate() command. DSDP will copy this data but not use
the array.

The data matrices can be specified by any of the following commands. The choice of
data structures is up to the user, and the performance of the problem depends upon this
choice of data structures. In each of these routines, the first four arguments are a pointer
to the DSDP solver, the block number, and the constraint number, and the number of rows
and columns in the matrix. The blocks must be numbered consecutively, beginning with
the number 0. Constraints are numbered consecutively beginning with the number 1. The
primal objective matrices are specified using constraint 0. The data that is passed to the
DSDP solver will be used in the solver, but not modified. The user is responsible for freeing
the arrays of data it passes to DSDP after solving the problem.

To set data in a dense matrix, the routine

int DSDPSetDenseMat(DSDP, int, int, int, double *);

hands DSDP a pointer to an array of length ni × ni, where ni is the number of rows in
the matrix. Since the matrix must be symmetric, the array may be in either row major or
column major form. The routine

int DSDPSetSparseMat(DSDP, int, int, int, double *, int *, int *);

specifies a matrix in sparse form. The fifth argment is an array containing the nonzeros of
the matrix. The sixth argument is an array of integers specifying the row number of each
nonzero. The last argument specifies the number of nonzeros in each column. Row and
column number must be numbered consecutively beginning with 0. The dimension of this
integer array is one more than the number of rows and columns in the matrix. The first
element in this array in 0. Subsequent elements in this array equal the previous element plus
the number of nonzeros in that column. These indices indicate where in the fifth and sixth
arguments to find the nonzeros for a particular column. This sparse column format, or sparse
row format, given the symmetry of the matrix, is the same sparse format used by MATLAB.
In the routines DSDPCSetDenseMat() and DSDPCSetsparseMat() the data passed into the
solver will be used by the solver, and should not be freed until the solver is finished. The
routine

int DSDPSetDenseMatWSparseData(DSDP, int, int, int, double*, int*, int*);

will create a dense matrix and initialize it with the values specified in the final three argments.
The nonzero values in this matrix are specified in the final three arguments, which require
the same format used in the routine DSDPSetSparseMat().

10

A diagonal matrix can be specified with the command

int DSDPSetDiagMat(DSDP, int, int, int, double *);

The last argument must be an array equal to the rows and columns of the block. This
command is especially appropriate when a block of linear programming variables is part of
the problem. A diagonal matrix can also be specified in sparse format by using the command

int DSDPSetSpDiagMat(DSDP, int, int, int, double *, int *, int);

In this routine, the fifth argument is an array of nonzeros, the sixth column is an array of in-
tegers specifying the row/column number, and the seventh argument specifies the the length
of the arrays in the fifth and sixth arguments which should equal the number of nonzeros in
this constraint block. In the routines DSDPCSetDiagMat() and DSDPCSetSpDiagMat() the
data passed into the solver will be used by the solver, and should not be freed until the solver
is finished.

If every element in matrix can the same value, the command

int DSDPSetConstantMat(DSDP, int, int, int, double);

will create a data structure that will make the computations in the algorithm more efficient.
Similarly, a program has a constraint where one block has a single nonzero element located
along the diagonal. The routine

int DSDPSetSingletonMat(DSDP, int, int, int, int, double);

creates an appropriate data structure. The fifth argument specifies the diagonal element
where the nonzero element resides and the sixth argument is the value of that element.
Matrices with a 2× 2 block form can be specified with the following command:

int DSDPSetTwoTwoMat(DSDP, int, int, int,

int i0, int i1, double d00, double d01, double d11);

The integers i0 and i1 specify the two row numbers of the nonzero block, while the next
three digits define the elements of the block. The elements in the upper triangular matrix
are specified in row major order. Matrices with a 3× 3 block form can be specified by using

int DSDPSetThreeThreeMat(DSDP, int, int, int,

int i0,int i1,int i2,

double d00,double d01,double d02,

double d11,double d12,double d22);

11

The integers i0, i1, and i2 specify the three row numbers of the nonzero block. The six
double precision arguments that follow define the upper triangular part of the matrix in
row major form. Constraint matrix blocks that have rank one can be specified by using the
command

int DSDPSetRank1Mat(DSDP, int, int, int, double, double *);

The sixth argument is an array of length equal to the number of rows and columns in the
block. The constraint is the outer product of this vector with itself times a scalar, which is
specified in the fifth argument. A zero matrix, often used in problems with multiple blocks,
can be specified with the routine

int DSDPSetZeroMat(DSDP, int, int, int);

which specifies the constraint, block, and size of the matrix.

3.5.3 Improving Performance

The performance of the DSDP may be improved with the proper selection of parameters
and data structures. DSDP accepts multiple data structures for the data matrices, including
dense, sparse, and diagonal representations. The choice of data types belongs to the user and
may affect the performance. In addition, DSDP may achieve greater efficiency by placing
diagonal blocks before nondiagonal blocks and smaller blocks before larger blocks.

DSDP allows the user to specify the initial starting point. The command

int DSDPSetY0(DSDP, int, double *);

specifies the initial dual vector y to be used. The second argument is an integer corresponding
to the number of constraints in the problem. The length of the array in the third argument
must exceed this dimension. DSDP will copy this data into its own structure. The initial
dual matrix can be partially controlled by using the command

int DSDPSetInitialInfeas(DSDP, double);

This command specifies a positive number r and sets S0 = C − ∑Aiy
0
i + rI, where I is

the identity matrix. If r < 0, a default value will of r will be chosen. If S0 is not positive
definite, the routine DSDPSolve() will return an error code of −100.

The algorithm also used trust regions to determine step sizes. The size of the trust regions
affects the convergence and robustness of the algorithm. By default, DSDP uses a relatively

12

large trust region. Smaller trust regions usually improve the robustness of the algorithm,
allowing it to solve more problems, but larger trust regions often reduce the number of
iterations needed to converge. The user may specify a maximum trust region radius using
the command

int DSDPSetMaxTrustRadius(DSDP, double);

A maximum radius of 3 is a very robust choice, although a radius of 100 is chosen as a
default for most problems.

3.5.4 Set Options

A variety of different options may be set when using DSDP. The precision of the solution
can be set by using the routine

int DSDPSetGapTol(DSDP, double);

This command will terminate if the solver finds a sufficiently feasible solution such that the
difference between the primal and dual objective values, normalized by the magnitude of
the dual objective value, is less than the prescribed number. A tolerance of 0.001 provides
roughly three digits of accuracy, while a tolerance of 1.0e− 5 provides roughly five digits of
accuracy. The command

int DSDPSetInfeasTol(DSDP, double);

specifies how small the dual infeasibility constant r must be to be an approximate solution,
and the routine

int DSDPSetMaxIts(DSDP, int);

specifies the maximum number of iterates. The routine

int DSDPSetDualBound(DSDP,double);

specifies an upper bound on the dual solution. The algorithm will terminate when it finds a
point whose dual infeasibility is less than the prescribed tolerance and whose dual objective
value is greater than this number. DSDP may print some information to the screen. This
information can be turned off by passing a zero value into the second argument of the routine

13

int DSDPPrint(DSDP, int);

A nonzero value asks to print the information. The command

int DSDPSetScaling(DSDP, int, double);

does some scaling of the problem. DSDP will scale the constraint in the second argument
by implicitly dividing the data in this constraint by the number in the third argument. A
constraint value of zero divides the primal objective matrix by this number. An appropriate
value is the magnitude of the largest element in the constraint or an average nonzero value
in the constraint.

Very large problems may require more RAM than a machine has to offer. In these
problems, the Schur matrix can be solved used an iterative solver that does not create the
large dense matrix associated with this method. Problems with constraints higher than a
specified tolerance will use this the matrix free method. Specify this tolerance using the
routine

int DSDPSetMatrixFreeSize(DSDP,int);

Problems solved using this method should use a low stopping tolerance.

3.5.5 Viewing Solution

The dual solution vector y can be viewed by using the command

int DSDPGetY(DSDP, int, double *);

The user passes the size of the dual vector and an array of double to DSPP, which will copy
the dual solution into this array. The routine

int DSDPGetInfeasiblity(DSDP, double *);

returns the dual infeasibility r used in the final iteration. To view the primal solution, the
user must call either the command

int DSDPSetDenseXMat(DSDP, int, int, double *);

or

14

int DSDPSetDiagXMat(DSDP, int, int, double *);

before solving the problem. The user should use the first command for SDP blocks and
the second command for linear programming variable blocks. The first, second, and third
arguments to these routines are a pointer to the DSDP solver, the block number, and the
number of rows and columns in the block,respectively. In the fourth argument, the user
passes an array of double precision variables long enough to store either a full dense matrix
of the size designated in the third argument, or a vector whose dimension equal the number
of rows or columns in the block. The command

int DSDPNoXMat(DSDP, int);

specifies a block for which the dual solution is not needed. Perfomance in the routine
DSDPSetup() is generally better when the nondiagonal primal solution matrices X have
been requested because it uses this array as work space instead of dynamically allocating it
for every matrix.

The success of DSDP can be interpreted with the command

int DSDPStopReason(DSDP, int *);

This command sets the second argument to an integer. If this integer equals 1, DSDP found
a primal and dual solution. If the integer is 2 DSDP terminated due to small steps. If the
integer equals 3, DSDP asserts that the problem is primal infeasible and the dual problem
is unbounded, and if the integer equals 4, DSDP asserts that the problem is dual infeasible
and primal unbounded. If the integer is -5 DSDP terminated after reaching the maximum
number of iterations.

Information about the convergence of the solver can be obtained with the commands

int DSDPGetGapHistory(DSDP, int, double *);

and

int DSDPGetInfeasHistory(DSDP, int, double *);

These commands retrieve the history of the duality gap and the dual infeasibility for up to
100 iterations. The user passes an array of doubles and the length of this array.

15

3.5.6 Monitors

The user can also monitor the solution at each iteration. The command A user can write a
routine of the form

int (*monitor)(int,double,double,double,double,double,double);

These arguments represent the iteration number, primal objective value, dual objective value,
dual residual norm, µ, step size, and ‖P‖. This routine can print these stats and do other
things. To set this routine, use the command,

int DSDPSetMonitor(DSDP dsdp,

int (*monitor)(int,double,double,double,double,double,double));

In this routine, the first argument is the solver and the second argument is the monitoring
routine.

16

Chapter 4

Parallel DSDP

The DSDP package can also be run in parallel using multiple processors.

4.1 Installation

To compile PDSDP using the following steps.

1. Install PETSc[1][2] Version 2.1.1, and set the PETSC ARCH and PETSC DIR environmen-
tal variables accordingly. This package contains parallel linear solvers and is freely
available to the public.

2. Copy the files DSDP4.5/src/PDSDP/dsdpalgebra.h, DSDP4.5/src/PDSDP/
dsdpkernal.h, and DSDP4.5/src/PDSDP/petscroutines.c into the directory
DSDP4.5/src/vecmat/.

3. Copy the files DSDP4.5/src/PDSDP/Makefile and
DSDP4.5/src/PDSDP/sdpa.c, into the directory DSDP4.5/src/.

4. From the directory DSDP4.5/src/, type make dsdpsdpa BOPT=O. Other drivers for
maximum cut problems and theta problems are also available.

4.2 Usage

PDSDP can be used much like the standalone version of DSDP that reads SDPA files and
graphs. Given a SDPA file such as truss1.dat-s, the command

17

mpirun -np 2 dsdp4 truss1.dat-s -log_summary

will solve the problem using two processors. Additional processors may also be used. This
implementation is best suited for very large problems.

18

Chapter 5

Dual-Scaling Algorithm

This section summarizes the dual-scaling algorithm, which is a modification of the linear
programming algorithm. Convergence of the algorithm has been discussed previously[3].

Following conventional notation, let

AX =
[
A1 •X . . . Am •X

]T
and ATy =

m∑
i=1

Aiyi,

5.1 Step Direction

Given a dual point (y, S) such that ATy + S − C = R (R is the infeasiblity matrix) and
S � 0, and a barrier parameter µ̂ > 0, each iteration of the dual-scaling algorithm computes
a step direction ∆y by solving the linear system

A1S
−1 • S−1A1 · · · A1S

−1 • S−1Am
...

. . .
...

AmS
−1 • S−1A1 · · · AmS

−1 • S−1Am

∆y =
1

µ̂
b−A(S−1)−A(S−1RS−1) (5.1)

and ∆S = −AT∆y−R. For notational convenience, we label the left-hand matrix of (5.1) M .
For any feasible X, this linear system (5.1) can be derived by taking the Schur complement
of the equations

A(∆X) = 0 AT (∆y) + ∆S = −R µ̂S−1∆SS−1 + ∆X = µ̂S−1 −X, (5.2)

which are the Newton equations for the nonlinear system

AX = b ATy + S = C µ̂S−1 = X, (5.3)

at a point (X, y, S) such that AX = b.

19

For a feasible dual point, the step direction also maximizes the function

φ(y) = bTy + µ̂ ln detS (5.4)

subject to ATy + S = C and minimizes the dual potential function

ψ(y) = ρ ln(z̄ − bTy)− ln detS

over a trust region [3]. In this dual potential function z̄ = C • X for a feasible matrix X,

ρ > n+
√
n, and µ̂ = z̄−bT y

ρ
. The relationships between these derivations can be found in [7].

Using the dual step direction and (5.2), the primal matrix

X(S, µ̂) = µ̂S−1 − µ̂S−1∆SS−1 (5.5)

and satisfies the constraints AX(S, µ̂) = b.

Given a feasible dual starting point and appropriate choices for steplength and µ̂, con-
vergence results in [3] show that either the new dual point (y, S) or the new primal point X
is feasible and reduces the Tanabe-Todd-Ye primal-dual potential function

Ψ(X,S) = ρ ln(X • S)− ln detX − ln detS

enough to achieve linear convergence.

A more thorough explanation of the the dual-scaling algorithm used to solve these prob-
lems can be found in the papers Solving Large-Scale Sparse Semidefinite Programs for Combi-
natorial Optimization[4] and DSDP 3: Dual-Scaling Algorithm for General Positive Semidef-
inite Programs. The C code that implements the algorithms can be downloaded from the
Web site at http://www.mcs.anl.gov/∼benson/ or http://dollar.biz.uiowa.edu/col/.

More information about the convergence of the algorithm and performance of the software
can be found at [3] and [4].

5.2 Step Length

The algorithm then selects a step size βk ∈ (0, 1] such that yk+1 = yk + βk∆y and Sk+1 =
Sk + βk∆S � 0. New in DSDP4 is the use of a Lanczos procedure [6] that approximates
the distance to the boundary of the positive definite cone. DSDP4 also limits the step size
with a trust region. Minimizing the dual potential function over a trust region with radius
α, gives the solution

β =
α√

(1
µ̂
b− A(S−1)−A(S−1RS−1))T∆y

.

DSDP uses a radius of 100 most problems, but smaller values often make the solver more
robust, although also force more time and iterations to find a solution.

20

5.3 Central Path

The linear algebra used to compute and solve the linear system (5.1) affects the cost of each
iteration. However, the choice of parameters in the algorithm, especially µ̂, has an enormous
impact upon number of iterations required for the algorithm to converge.

The heuristic that we use looks for

µ̂ = arg min X(S, µ) • S
subject to X(S, µ) � 0.

New to DSDP4 is a Lanczos procedure that estimates this quantity. When this value cannot
be found, DSDP computes the value of µ that creates bT∆y = 0. and sets µ̂ = 0.7µ.

21

Chapter 6

Acknowledgements

We thank Cris Choi and Xiong Zhang for their help in developing this code, and Hans
Mittelmann for his efforts in testing and benchmarking it. We also thank the users who have
sent comments and bug reports for previous releases. Their contributions have made DSDP
a more reliable, robust, and efficient package.

22

Bibliography

[1] S. Balay, W. D. Gropp, L. McInnes, B. F. Smith. PETSc Home Page,
http://www.mcs.anl.gov/petsc, 1998.

[2] S. Balay, W. D. Gropp, L. McInnes, B. F. Smith. PETSc 2.0 Users Manual. Technical
Report ANL-95/11 - Revision 2.1.1, Argonne National Laboratory, 1998.

[3] S. J. Benson, Y. Ye, and X. Zhang, Solving Large-Scale Sparse Semidefinite Programs
for Combinatorial Optimization. SIAM Journal of Optimization, 10:443–461, 2000.

[4] S. J. Benson and Y. Ye. DSDP3: Dual-Scaling Algorithm for General Positive Semidefi-
nite Programs. Technical Report ANL/MCS-P851-1000, Argonne National Laboratory,
November, 2000.

[5] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3 – A MATLAB Software Package for
Semidefinite Programming, version 1.3 Optimization Software and Methods, 11:545-581,
1999.

[6] K. C. Toh, A Note on the Calculation of Step-lengths in Interior-Point methods for
Semidefinite Programming , Computational Optimization and Applications, to appear.

[7] Y. Ye. Interior Point Algorithms : Theory and Analysis. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons, New York, 1997.

23

